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This rapor t documents a general non-linoar reg.reasinn program for fitting

data to non-linear models. The proqram is based on an aloiorithm-vMaXMXald-(

which uses a least squares criterion to calculate successive improvements to an

initial set of parameter estimateu. The program is written in the PASIC language

common to mont microcomputers, because it is saay to use and to transport between

machines from different manufacturers. The tonjority of inexpenmive

microcomputers do not offer matrix operations an part of their BASIC Interpreter.

The program presented here, therefure, supplion subroutines in BASIC for the

seroing, tranaposing and inverting of the required matrices, to make it

compatible with moat microcomputers available today.. The report gives examples

and program output bayed on A dirmnnal.ration data set involving antLgsn-antLbC!iy

complexation in solution. Two derivrntionf of function subroutines are given to

asiest the usei in developing his own functions. A complete linting of the

necessary programs is given along with a section on program cautions.
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INTRODUCTION

The advent of the personal computer and the development oE general purpose

software has now made it possible for blo-medical scientists to take advantage of

powerful modeling tools previously available only to mathematicians or computear

scientists. Care must be taken, however, to insure that programs are correctly

applied and that any limitations in the methods arm clearly understood.

thatOne modeling application which appears repeatedly in blo-medical research is

"that of predicting an outcome on the basis of experience. This statistical

method, known as regression analysis, requires that a functional relationship

between the dependent and independent variables be specified. In the past,

regression analysis has been largely limited to linear models. Such models can
be solved by hAnd with a single matrix invorsion, although they are more easily

solved using a computer. Certain other models can be made linear by parameter

transformation in order to utilize linear regression techniques. Transformations

Scan introduce unwanted and sometimes unsuspected limitations or assumptions into

the model and must be used with care. The majority of models encountered in

bio-medLcal research and in problems of solution equilibrium, however, are

non-linear and many cannot be transformed into linear form. In order to

adequately model these systems a requirement exists for a general purpose

non-linear regression technique which is both sufficiently general and robust to

be applicable to a wide variety of research interests.

This report documents a general non-linear regression program for fitting

data to non-linear models. The program is written in the BASIC language common to

most microcomputers. The program has been adapted for use on several,

stand-alone, microcomputer systems including the Wang 2200 series, the Radio

Shack TRS-80 Models I and II, and the Apple II. Because BASIC is common to most

microcomputer systems the program is transportable between machines with relative

ease. Some microcomputers offer matrix operations as part of their BASIC

interpreter, however the majority of inexpensive microcomputers do not. The

program presented here supplies subroutines in BASIC for the reroing, transposing

and inverting of the required matrices, to make it compatible with most

microcomputers available today. If the program is to be used on equipment which

supports matrix operations, the matrix subroutine calls can he replaced with the

corresponding matrix keywords.
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METHOD

The program is based on an algorithm by Marquardt (1) whtch uses a Taylor's

series expansion to give successive improvements to an initial sot of parameter

estimates. The method is actually a compromise between the Taylor's series

(linearization method) and the method of steepest descent (gradient method). It

combines the best features of both methods while avoiding their most serious

limitations (2). It shares with the gradient methods th'ýir ability to converge

from an initial guess which may be outside the region of convergence of other

methods, and with the Taylor series methods their ability to rapidly converge

once in the vicinity of the minimum, An attenuation parameter (lambda) is used

to interpolate between the two methods as needed. Making lambda large favors the
gradient method, and expands the region of convergence; making lambda small

selects the Taylor aeries and favors rapid convergence. Although no single

method can be considered best for all non-linear problems Marquart's method is a

sensible first choice, provided the initial parameter estimates are reasonable.

The user supplies a subroutine which specifies the calculation of an error

"between an observed variable and a model of the observations. The model is a

mathematical relationship between the independent variables (X(J,l)- X(J,5))) the

coefficients or parameters being estimated (B(l)-B(l0))i and the independent

variable (Y(J)). The subscript (J) is used by the program to indicate each

distinct data point and must be included in the model. The user provides the

data and the starting guesses for the parameters or coefficients (B's) being

estimated by tae least squares criterion. The program then calculates a sum of

squared errors (SSE). The program also calculates numerical partial derivatives

of the function with respect to the B's and uses these together with the

attenuation parameter (lambda) to select a new set of B's. If the new B's give a

better SSE then lambda is divided by 10 and the cycle is repeated. If the new

B's do not improve the SSE, then lambda is multiplied by 10 and another set of

B's is calculated. At each iteration the new parameters, the SSE, lambda, and

.R-squared are printed out. All this is repeated until the pre-selected number of
cycles has been exhausted or until successive changes in the B's are less than

one part in 10,000 (Line 470). Detailed accounts of this method may be obtained
from the references listed.
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THE PROGRAM

The program actually exists in four separs•tm ,yv-.tu (listed in Appendix A)

which are stored as independent disk files. Ap Isted thoyj run on a Radio Shack

TRS-80 Model II but can easily be adapted to any machine using Kicroaoft BASIC.

The program statements that differ from machine to machine ure those concerned

with I/O. On some machines the multiple statement lines will. need to be listed

as single statements. Although several versions of this program have contained
subroutines for plotting the data points as wall as the functional relationship

in order to visualize the model "fit", plotting routines have been omitted from
this report because they are extremely machine dependent. If plotting i. desired

it is usually quite simple to add plot routines for a specific machine, The

' ~experimental data points are contained in the variable arrays Y() and X(,). A

series of X values can be generated incrementally between a lower and an upper

limit, and a corresponding Y value can be calculated for each using the function

subroutine in Line 50 of the program. The model curve can then be plotted and

compared to the plot of the experimental data. Of course only one independent

variable can be plotted at a time.

The first program is called "NONLIN/DAT" and is used to facilitate data

entry and to create disk data files. Many independent data sets can be created

and stored on disk under different names using "NONLIN/DAT". The main program is

called "NONLIN/REG" and performs the actual regression analysis. The third is

S"NONLIN/PRT" and cannot be used independently but may be merged with "NONLIN/REG"

Sto divert the output from the screen to the printer. The fourth is the function

subroutine. It is called by any 8 character description "***** plus the file

extension /FUN, The function subroutine is a BASIC merge file and must be merged

with "NONI.IN/REG" prior to program execution. This design allows many functions

* to be stored on the disk with only a single copy of the "NONLIN/REG" program.

Since both "NONLIN/PRT" and "********/FUN" are merge files they must be saved to

disk in ASCII format.

Program 1 "NONLIN/DAT" and program 3 "NONLIN/PRT" are self explanatory,

require no changes and should be used as listed except for any machine specific

Smodifications. Program 2 "NONLIN/RUG" has the option of adding a "Plot Data

Points" routine between lines 1006 and 1 499 and a "Plot Least Squares Vit"

i between lines 1506 and 1994. A subroutine to scale the data or to establish

*t
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upper and lower limits for the plot can be added in this same region. it in

possible to change the convergence criterion by changing the value in line 470 to

a larger or smaller number. The rest of the program is quite general with the

ability to handle up to 100 data points and up to 5 independent variables

(X(J,I)-X(J,S)) automatically. The total number of data pcAnts and the number of

X variables are read in with the data set. The number of parameters is governed

by the function and is limitad to 10 (B(l)-B(10)). If computer RAM storage is

limited it may be necessary to reduce the size of the X(,) and Y() arrays to

conserve space. The program itself occupies about 5400 bytes of RAM and

increases to 6000 bytes when the printer routine and an average function routine

are added. Program space can be reduced to about 4400 bytes by compression if

absolutely necessary. This is not recommended, however, because the program code

becomes unreadable and the merging of printer and function routines impossible.

The data arrays require an additional 5500 bytes for a total program requirement

of 11,500 bytes. The best way to recover space is to redefine the data arrays,

if possible, to use less memory. The majority of microcomputers can, however,

accommodate this program easily in its entirety. In general programs 1-3 require

little operator intervention or attention.

Program 4 A********/FUN" is the only part of the program that is really

.variable and must be written by the operator. This is the mathematical function

or model to which the data are to be fitted. The subroutine begins in line 50

and uan continue through line 99. It is located in the beginning of the program

for easy viv.bility and because it in the most frequently called routine in the

*program. Sinco the BASIC interpreter starts searching for subroutines at line 1,

the location of the function subroutine early in the program provides a slight

speed advantage. The subroutine is created like any other BASIC program and then

saved to disk in ASCII format so that it can be merged into the main program.

Since BASIC does not differentiate between variables in the main program and

those in subroutines, care must *be taken not to use any variables in the

subroutino which are used in the main program. A variable cross reference index

is given in Appendix D to help users avoid main program variables in the function

subroutine. Array, string and explicitly defined variables of the same name,

however, are all distinct in Microsoft BASIC. Appendix C gives the derivation of

the function subroutines which correspond to those used for the example program

outpmt in Appendix B. The function routine has only two tasks, to use the

parametre (3B's) and the X values to calculate a Y(calc) value and to compare

6
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this value with the true Y value to determine the error. This error must be

stored in the variable 3 (EwYCJ)-Y(calc)) end will be used by the main program to

compute the SSE. The subroutine must then return to the main program. It is a

"good practice to print the function subroutine (LLIST 50-99) before running any

A-" program. This provides a permanent record of the model used for that fit on the

oaem page as the program output.

RUNNING THE PROGRAM

Most microcomputers first load a Disk Operating System (DOS). To run a

BAST.C program the BASIC interpreter must be loaded before the program. Allowance

for at least one 1/0 buffer must be made when BASIC is loaded. The sequence for

loading NONLIN ins LOAD "NONLIN/REG"l MERGE "NONLIN/PRT" if the output is to go

to the printeri and MERGE #********/PUN" (the function subroutine which has been

V previously created and stored on disk). Examples of program output for one, two

and three parameter models using the same data are given in Appendix B. Typing

RUN begins execution of the program. The program then requests the following

inputs%

Data File Name? --- Responses Enter the name given the data file at the
"time of file creation.

4Max. No. IitaiLions? ... nsponsei Enter a limiting number of iterations
in case the model does not converge, a good practioal number is 15.

Initial Value Lambda? --- Response: Enter the starting value for lambda,
usually 1. The more accurately the starting B's are known the
smaller lambda can be.

No. of Parameters? --- Response: Enter number of parameters in the
regression model. Must be the some as the # of parameters used in
the function B(l) to B(10).

Starting Parameters? --- Responses Enter the beat estimate possible for
each of the parameters used in the function. tf, for example, 3 was
entered under No. of Parameters then a separate estimate must be
given for each of the 3 parameters here. It is possible to defeat

I .' the program by entering unrealistic values for the We' at this point.
k The estimates must correspond exactly as used in the model B(1),

5(2), 3(3) etc.

Print Data? --- Responses Typing I will cause the data set to be printed! ; ' out, Y first then each of the five X's. if any of the X's are not
used a 0 is printed instead.

From this point on tho program rune automatically printing the number for

each iteration, the values of the parameters, the S5E, the R-square and lambda.

Only those steps in which the 852 improves count as an iteration. If the SS has

incroased instead of decreased, a new set of B's will I- found using the old S's

7
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and a 10 fold larger value for lambda. Lambda is not printed and the iteratlon

counter is not incremented. Iteration continues until either the convergence

criterion is met or the program runs out of iterations as specified on program

i entry. It then sets lambda-0 and caloulates a final set of parameters, a final

SSE and a final R-square. It also gives the overall variance and the standard

deviation and an approximate standard error for each parameter with its

coefficient of variation. The more nearly linear the model, the more accurate

are these approximations.

The program then offers the option to print out the variance-covarianco

matrix, the correlation inatrix and a table of residuals. The table of residuals

is useful for quickly detecting bias in the model, and the correlation matrix for

spotting interactions between parameters. The program also offers a complete

*, , printout of the X and Y data and uses the beat values of the parameters (B's),

found by the iteration, to compute the corresponding Y(calc) values and their

approximate standard errors. Th.i 95% confidence interval on Y(calc) is also

printed as (+/- 2 SD) as is the residual. Only the first value of X is printed.

If plotting subroutines have been added to the program, plots of the data and

t function can be drawn at this time. The program then either processes another

data set or terminates.

EXAMPLES

Three separate program outputs for a one, a two and a three parameter model

are provided in Appendix B. The same data set is used for all three examples to

demonstrate how changing the mathematical model to more accurately represent the

actual species in solution results in a considerable improvement in the fit of

the experimental data. Derivation of the functions used for these models is

provided in Appendix C to illustrate two common methods for developing the model

functions. The data set used for the examples represents a number of serial

*: dilutions of a solution containing an antigen-antibody complex. The Y value

represents that fraction of the total antigen bound to antibody. The Y(J)'s

* were obtained by dividing the amount. of radioactivity present in an ammonium

sulfate preclpitation of the complex by the total radioactivity. The X(J,l)

value Is theo dilution factor for each of the 11 solutions, The total starting

concentrations for both antigen and antibody are known, The total concentrations

for each dilution are obtained by multiplying the total concentrations by the

S.. .... •- -r .-- • ,•,T • .... .. . __ __ •_ . .. .. r _ _ .'. _. .. . . . *
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dilution factor X(J,l). You will note that the undiluted solution is 33.41 bound

while the 1/50 dilution is only 9.3% bound.

The first example in Appendix B is the 1:1 model for antigen-antibody

binding. Only one parameter is needed for this model namely the equilibrium

binding constant K. This model is the simplest case for a solution interaction

since it permits only a s&ngle species of both antigen and antibcdy and only one

Sinteraction between them. Models of this type are relatively easily solved

algebraically in terms of known quantities (such as the total antigen and total

antibody concentrations) and the parameters being estimated (see Appendix C).

"The equilibrium expression and the masa balance equations reduce to a quadratic

equation in either free antigen or free antibody concentration which can be

solved using the quadratic equation as is done here. This method is preferable

to iterative methods for function solution since the evaluation is direct, not by

successive approximation. There are many instances, particularly with multiple

* equilibria, where higher order equations are encountered which are more difficult

to solve algebraically. In these cases numerical procedures for evaluating the

function are preferred although computer time may be lengthened substantially.

The numerical solution of a function is shown in example 3. Many problems in

solution equilibrium can be expressed in terms of the fraction of wome component

bound as a function of an unbound species. This type equation often reduces to

the form (Y-)3*X/(I+B*X) where Y is the fraction of a species bound, B is a

parameter, usually a binding constant, and X is the free concentration of the

Sbinding species. The single parameter model yields a binding constant of

5.1E+5, with a standard error of about 17%. The SSE is .0323 and the R-square of

.43 shows that only 43% of the total variation is explained by the model. The

table of residuals shows a clear bias in the fit with large negative errors at

one end of the data to large positive errors at the other. This is a cleur

indication that the model is not quite correct.

The second example is an attempt to improve the fit by introducing a secondf ,parameter but using the same lIl binding model. Here we postulate that the

starting total antibody concentration in incorrect and that some other

"effective" antibody concentration more accurately represents conditions in the

solution. The first parameter is the binding constant and the second is the

"effective" total antibody concentration. As you can see addition of this

parameter reduces the SSE to .0016 and improves the R-square to 97% explained

variation, a clear improvement in the fit. The binding constant is changed to

9

- - -- - .~-* . . . ~ --



2.7E+6 with a standard error of 12%. The total antibody concentration drops from

4.5E-6 to an effective concentration of 2.3E-6 which greatly improves the fit to

the 1:I model. The standard error in this concentration parameter is only 4%.

The residuals, although smaller than those in example 1, @till indicate a bias

since they are first positive, then negative and then positive again. In general

one hopes for randomly distributed signs on the residuals. The correlation

matrix indicates a fairly high correlation between the two variables at .84. On

statistical grounds, an increase in the number of degrees of freedom (parameters)

in the model is expected to decrease the SSE and improve R-square. Whether or

not the decrease in the SSE, on addition of a parameter, is significant can be

determined using an F-test.

Example 3 expands the model from a lil single species binding model to a

multiple species model. This 3 parameter model postulates that the total

antibody concentration is divided between two different antibody species, each

with a different binding constant, competing for a single species of free

antigen. The inverse model. where two different species of antigen compete for

free antibody also fits the data well. The first two parameters are the two

binding constants and the third is a distribution coefficient which determines

what fraction of the total antibody belongs to each species. These equilibrium

ewpressiona and the mass balance equations would reduce algebraically to a cubic

equation in the known quantities and the parameters. In general the resultant

equation is a polynomial of order (I binding constants + I). Solving higher

order equations in terms of knowns and finding their roots, is more involved than

the solution of a quadratic in examples 1. and 2. Since equilibrium equations are

positive definite functions, an easier method is available, although it requires

more computer time. It is possible to use a binary search to find the true value

for free antibody concentration by successive approximation.

The binary search works as follows. First one uses the equilibrium and mass

balance equations to solve for the free concentrations of antibody 1 (Bl) and

antibody 2 (B2) in terms of the binding constants (1() and (K2), the total

antibody concentration (TB) and the free antigen corncentration (M). We also

solve for total antigen concentration (TG) in terms of the (KI, K2, Bl, B2) and

(G). All except (G) are known. We can find (G) by guessing a concentration half

way betveen zero and the total antigen concentration (TG). We then use this

guess to calculate a value for ,'C,, TG(calc). We compare this with the true value

for TG. If TG(calc) is too hilh then the guess for G was too high and we set the

10
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now upper limit on G to the old value for G and keep the lower limit. If TG is

too low then G was too low and we set the lower limit on G to the old Q value and

keep the upper limit. A new G is then chosen half way between the new upper and

lower limit s and the procedure is repeated. The search continues until the new

value for G does not differ. significantly from the old value. The function then

uses (TG-G)/TG to calculate the fraction antigen bound, Yicalc), computes the

error E and returns.

The results yield a high affinity antibody with a constant of 4.4E+6, and a

low affinity species with a binding constant of 6.0E+4. These constants have

coefficients of variation of 12% and 20% respectively. The third parameter tells

us that the proportion of high affinity antibody im 39% and low affinity antibody

611. You will also note that the 66i hs been decreased to .00033 and the

R-square increased to 99.4% explained vari&tion. This is a mignificant

improvement in fit over the two parameter model in example ., The residuals also

look very good. They are all small, have randomly distributed signs and show no

particular bias. The correlation matrix shows a correlation of .45 between the

two binding constants, .84 between Kl and the distribution constant (R) and .82

between K2 and R. On the basis of the random residuals, the low SSE and the high

R- square we would conclude that the model in example 3 adequately represents the

data, Although there may be other models which also fit this data, 2 antibodies

1 antigen is a good model.

PROGRAM CAUTIONS

The Taylor's series used in the program has a region of convergence. Making

lambda large increases the size of this region, however it is still possible to

give initial parameter estimates which are outside this region. When this

happens the program may diverge instead of converging and the program will

terminate with an error condition, either a division by sero or san

overflow/underflow error. This can also happen if the model is incorrectly

"postulated or an algebraic error is made in the function derivation. It can also

happen if there is an error in the data. If a program error happens, the data

should be carefully checked for accuracy, the functional model checked for

algebra and the starting parameters checked. If this doesn't help a new

parameter set should be tried or a larger starting lambda value.

....................................... ................... . ..... ._--.,-•. F.•..•



Many functions of interest to the researcher are limited in their range by

nature. For example concentrations and therefore binding constants can only have

positive values (negative concentrations are undefined). The regression program

has no such limitation, however, since mathematically negative and positive

numbers are equally valid. This can present a problem since the program can find

* Isolutions with negative (meaningless) as well as positive binding constants. The

problem can be avoided by careful restructuring of the function i.e. by
transforming one or more parameters to new parameters with natural limits

corresponding to the desired limits, For example one can use the log K value

instead of the K parameter since the log function is naturally limited to

positive numbers. In example 3 we used another technique to limit the range of a

parameter. Instead of using the parameter R for thq distribution coefficient

between the antibody species, we used the squared Sin function. Since the only

meaningful values for R are positive numbers between 0 and 1 the range of R must

be restricted. This is done by letting (R-Sin(E(3))*Sin(E(3)) where the new

parameter is the argument of the Sin function in radians. Now R is limited to

the positive range a to 1 whereas if it were a parameter itself it could include

all positive and negative real numbers. The immediate mode of BASIC can be used

after completion of the program to print the actual value of the parameter of

interest.

One must also recognize that just because the program finds a parameter fit

to a data set does not make that model true. The mathematical representation may

be useful for prediction but may or may not shed any light on the actual
I .mechanism of the process under investigation. The model should not only be

algebraically correct it should also have either physical or chemical

significance, i.e. it should represent and be consistent with all other known

characteristics of the real system.

Certain models and data sets have an SSE surface which exhibits regional as

well an global mimima. If this occurs it is possible for the program to locate a

local minimum instead of the global minimum. In this case the convergence

criterion is met but the program has fallen into a pit and has not located the

lowest point on the surface. To test for this condition one should, when

initially investigating a new model, examine the surface using several starting

values for the parameters. If the program converges to the same point from

several different starting points one can be reasonably confident that the global

minimum has been found.

12
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APPENDIX A

PROGRAM (1) NONLIN/DAT

1.0 REM **** DATA INPUT ROUTINE FOR NONLIN ****
15 DIM Y(iO0),X(100,5)
20 CLS t INPUT *NUMBER OF DATA POINTS (100 MAX)WIN
25 INPUT "NUMBER OF INDEPENDENT (X) VARIABLES (5 MAX)OINI
30 INPUT "NAME OF DATA FILF*IZ$
35 PRINT s PRINT "Y VAR. s X VARS."
40 PRINT " --------- PRINT
45 FOR 1-1 TO N
50 PRINT "ENTER Y(wili")"; t INPUT Y(I)
55 FOR Jul TO Ni
60 PRINT "X(;IiJ;w)"mi INPUT X(I,J)
65 NEXT JI
70 OPEN O-",1,Z$
75 PRINT #1, N,Nl
80 FOR 1-1. TO N
85 PRINT #1, Y(I)
90 FOR J-1 TO Ni
95 PRINT #1, X(I,J)
100 NEXT J,.
105 CLOSE 1
110 END

1A-
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APPENDIX A

PROGRAM (2) NONLIN/REG

10 CLS : PRINT "*** NON-LINEAR REGRESSION ANALYSIS * £ PRINT
15 DEFINT IJl
20 DIM B(10),G(.t0),P(10),Y(100),X(100,5)
25 DIM A(10,10),AA(10,10),C(10,10),0(10,10)
30 GOSUB 2400
35 GOTO 110
50 REM *** INSERT FUNCTION HERE (LINES 50-99) **

THE FUNCTION MUST CALCULATE A VALUE (F) FOR Y(J),
*COMPUTE TE ERROR BETWEEN THE OBSERVED AND CALCULATED

Y VALUES (E-Y(J)-F), THEN RETURN.
100 INPUT "NEW POINT SET (0-NO, 1-YES)";E6 : PRINT
105 IF 16>0 THEN RUN ELSE 1995
110 INPUT "MAX. NO. OF ITERATIONS"IT1
120 INPUT "INITIAL VALUE OF LAMBDA"IL
130 INPUT "NO. OF PARAMETERS"INI
140 PRINT i PRINT "STARTING PARAMETERS" i PRINT
145 FOR I-1 TO NI
150 PRINT "B(",II")", i INPUT B(I) s NEXT I
170 IF Z5-0 THEN 200

175 PRINT a PRINT "OBSERVATIONS Y,X(1-5)" a PRINT
180 FOR 1-1 TO N
190 PRINT "("vI")"ITAB(7)pY(I)ITAB(17)rX(I,1);TAB(27)IX(I,2)p
TAB(37)IX(I,3)hTAB(47)pX(I,4);TAB(57)JX(I,5)195 NEXT I
200 Z1-0 t 22-0

205 FOR I-1 TO N
210 ZI-ZI+Y(I)
215 Z2-Z2+Y(I)*Y(I)
220 NEXT I
225 T2w0
230 T2-T2+1
235 S0-0
240 GOSUS 2000
245 GOSUB 2025
250 GOSUB 2050
255 GOSUB 2075
260 FOR J-1 TO N
265 GOSUB 50
270 S0"S0+E*E
275 E-IE
280 FOR I1- TO Ni
285 B(I)wB(I)*1.001
290 GOSUB 50
295 B(I)-B(I)/1.001
300 P(I)-(El-E)/(.001kB(I))
305 NEXT I
310 FOR 1-1 TO Ni
315 G(I)CG(I)+EI*P(I)
320 FOR Il- TO NI
325 A(II1)-A(I,I1) + P(I)*P(I1)
330 NEXT Ii
335 NEXT I
340 NEXT J
345 FOR 1-1 TO Ni
350 FOR J-1 TO NI
355 Q(I,J)-A(X,J)/(SOR((A(ItI))*(A(J,J))))
360 NEXT J
365 G(I)0(I)/(SQR(A(I,I)))
370 NEXT I
375 PRINT i PRINT "SSE-"jS0TAB(22),"ITERATION NO.-"IT2;
TAB(49);"LAMBDA-"jL
390 PRINT "R-SQUARE -"I1-(S0/(Z2-(Z1*Z1/N)))
395 FOR I-1 TO Ni
400 Q(II)=Q(II)*(l+)
405 NEXT I
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410 GOSUB 2250
415 FOR -1. TO Ni
420 P(I)-0
425 FOR J-1 TO Ni
430 P(I)-P((I)+C(I,J)*G(J)
435 NEXT J
440 P(I)uP(I)/(SQR(A(II)))
445 NEXT I
450 IF T1<0 THEN 650
455 IF T2>-TI THEN 500
460 NN-O t 1-i
465 IF I>Nl THEN 510
470 IF ABS(P(!)/B(I))<.0001 THEN NN-NN+I
475 IF NN>-N1 THEN 490
480 I-I+l v GOTO 465
490 PRINT t PRINT "CONVERGENCE"
495 GOTO 620
500 PRINT "YOU ARE OUT OF ITERATIONS"
505 GOTO 620
510 FOR 1,, TO Ni
515 B(I)*B(I)+P(I)
520 NEXT I
525 61-0
530 FOR J-i TO N
535 GOUB 50
540 .Im81+3*E
545 NEXT J
550 PRINT "PARAMETERS"
"555 FOR I-1 TO Ni
560 PRINT B(I)l
570 NEXT I

4 575 PRINT
580 IF 81>80 THEN 595
585 L-L/10
590 GOTO 230
595 L"L*10
600 FOR Il TO Ni
"605 B(I)-B(I)-P(I)j,6(10 NEXT I
615 GOTO 395
620 TN--T

" 625 Lo0

630 GOTO 230
650 PRINT
655 V-80/(N-N1)
660 VI-SQR(V)
665 PRINT *VAR." VTAB(22 )"BDm",VITAB(49) "SSE",80
675 PRINT
680 GOSUB 2275
685 005U3 2300
690 PRINT "FINAL PARAMETERS"jTAB(22)IISTD. ERROR OF PARAM."1
TAB(49)i"COBFF. OF VAR."
695 PRINT "-------------"-TAB(22)1" --------------------.

I, TAB(49)g -------------- .
715 FOR 1la TO NI
720 DSQR(A(I,I))

* 725 PRINT TAB(3)IB(I)ITAB(27)IDITAB(52)iD/B(I)
730 NEXT I
735 PRINT i PRINT "PRINT VARIANCE-COVARIANCE MATRIX
( 0NO,1-YzS 'I

"* .740 INPUT 57 1 PRINT
745 IF 37m0 THEN 765
750 G0080 2325
760 PRINT
765 PRINT "DO YOU WISH PRINTOUT OF ESTIMATED Y FOR EACH X
(0-NOl-YES) "
770 INPUT H7 a PRINT
775 IF N7w0 THEN 920
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780 T-2
785 PRINT TAB(6)1"X";TAB(16)1"¥";TAB(23)I"ESTIMATED YNITAB(36)i
"S.E. EST. YNITAB(49)1"RESIDUAL"

790 PRINT TAB(23)W-("(Tj"* BoE.E"jTAB(36)l"+("NT,"* SOB.)"
792 PRINT TAB(2)" ---------- "TAB(12)" ----------. "TAB(23)1"-------------- "TAB(36);" -------------- "ITAB(49)I" ---------
800 FOR Jul TO N
805 GO0UB 50
810 El-E
815 FOR I-i TO Ni
820 B(C)-B(T)*i.001.
825 GOSUB 50
830 B(I)-B(I)/1.001
835 P(I)-(EI-E)/C.00*BCI).
840 NEXT I
845 Vl-0
850 FOR J2-1 TO NI
955 FOR Jl-l TO NI
860 VI-VI + A(J1,j2)*P(JI)*P(J2)
865 NEXT J1
970 NEXT J2
875 V2mSQR(VI)
880 LI-Y(O)IEI-T*V2
885 L2"LI+2*T*V2
890 PRINT TAB(2),X(J,1),TAD(12),YCJ),TABC23),Y(J)-EliTAfl(36),
V2;TAB(49)iEl
900 PRINT TA8(23);LIjTAB(36)iL2
910 NEXT J
915 PRINT

J 920 PRINT "DO YOU WISH TABLE OF RESIDUALS (0-N0OIYES)"i
• 925 INPUT HI

930 IF H8-0 THEN 970
935 PRINT
940 PRINT " RESIDUALS"
"945 PRINT
950 FOR Jul TO N
955 GOSUB 50
960 PRINT "("1;JI")",E
"965 NEXT J
970 PRINT t PRINT "PRINT CORRELATION MATRIX (0-NO,I-YES)",

~ I975 INPUT E6 i IF ES-0 THEN 1000
980 PRINT
985 GOSUB 2350
1000 PRINT i INPUT "PLOT DATA POINTS (0CNO,I-YES)";DI PRINT
1005 IF DI-0 THEN 1500
1500 INPUT "PLOT LEAST SQUARES PIT (0-NO,1-YES)"ID2 a PRINT
1505 IF D2-0 THEN 100
1995 END
2000 REM ** ZERO MATRIX G
2005 FOR II-1 TO NI
2010 G(II)uO
2015 NEXT II
2020 RETURN
2025 REM ** ZERO MATRIX A *
2030 FOR I-1 TO N1 i FOR JJ-i TO Ni
2035 A(II,J3)-0
2040 NEXT JJ i NEXT II.. " 2045 RETURN
2050 REM ** ZERO MATRIX Q k*
2055 FOR Il-i TO NI t FOR JJ3- TO Ni
2060 Q(IIJJ)'0
2065 NEXT JJ i NEXT II
2070 RETURN
2075 REM ** ZERO MATRIX C **
2080 FOR I-i TO Ni i FOR JJ-1 TO N1
2085 C(II,JJ)-0
2090 NEXT JJ a NEXT II
2095 RETURN
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2100 REM * MATRIX INVURSION ROUTINE *
2105 FOR JJ-1 TO Ni
2110 FOR II-JJ TO NI
2115 IF AA(IIJJ)<>0 THEN 2135
2120 NEXT II
2125 PRINT "SINGULAR MATRIX"
2130 STOP
2135 FOR KKwi TO N1
2140 S-AA(JJ,KK)
2145 AA(JJ,RK)-AA(II,KK)
2150 AA(II,KK)-S
2155 S-C(JJ,KK)
2160 C(JJ,KK)-C(II,KK)
2165 C(II,KK)"S
2170 NEXT KK
2175 TT-1/AA(JJ,JJ)
2180 FOR KK-i TO Nl
"2185 AA-JJ#KR)mTT*AA(JJ#KK)
2190 C(JJ,KK)mTT*C(JJ,KK)
2195 NEXT KK
2200 FOR LL-i TO Ni
2205 IF LL-JJ THEN 2235
2210 TTo-AA(LL#JJ)
2215 FOR KKRi TO Ni
2220 AA(LL,KK)-AA(LLKK)+TT*AA(JJ,KK)
2225 C(LL,KK)-C(LL,KK)+TT*C(JJ,KK)
2230 NEXT KK
2235 NEXT LL
2240 NEXT JJ
2245 RETURN
2250 REM * TRANSFER MAT Q TO MAT AA *
2255 GOSUS 2075
2260 FOR Ilai TO Ni i FOR JJ-l TO Nl a AA(II,JJ)-0(IZ,JJ)
2265 NEXT JJ i C(II,II)-l : NEXT II
2270 GOSUB 2100 t RETURN
2275 REM * TRANSFER MAT A TO MAT AA *
2280 GOSUB 2075
2285 FOR Il-1 TO Nl : FOR JJ-1 TO N3 . AA(IIJJ)-A(IIJJ)
2290 NEXT JJ i C(CII)-I : NEXT II
2295 GOSUB 2100 t RETURN
2300 REM : CONFIDENCE MATRIX TIMES VARIANCE *
2305 FOR II-1 TO NI i FOR JJ-i TO Ni
2310 A(II,JJ)-C(II,JJ)*V
2315 NEXT JJ3,I
2320 RETURN

2325 REM * MATPRINT A *
2330 FOR IIl- TO Ni t FOR JJ-1 TO Ni
2335 ES-A(II,JJ) i PRINT E8;
2340 NEXT JJ : PRINT N NEXT II
2345 RETURN
2350 REM * MATPRINT Q *
2355 FOR II-l TO Ni a FOR JJ-1 TO NI
2360 EB-Q(II,JJ) : PRINT E8;
"2365 NEXT JJ : PRINT i NEXT II
2370 RETURN
2400 REM ** DATA INPUT ROUTINE *
2405 INPUT "ENTER DATA FILE NAME"IZ$
2410 OPEN "I",1,Z$
2415 INPUT #1, N,N2
2420 FOR 1-1 TO N
2425 INPUT #1, Y(I)
2430 FOR J-l TO N22435 INPUT #1, X(I,J)2440 NEXT JI
"2445 CLOSE 1

2450 RETURN
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PROGRAM (3) NONLIN/PRT

5 LPRINT *NONLINEAR REGRESSION ANALYSIS* LPRINT
31 LPRINT "DATA FILE NAME"ffZ$
115 LPRINT '1MAX. NO. OF ITERATIONSNTl
125 LPRINT "INITIAL VALUE OF LAMDDA",L
135 LPRINT "NO. OF PARAMETERS",Nl
1.41 LPRINT aLPRINT "STARTING PARAMETERS" i LPRINT
150 PRINT B(I") aINPUT B(r) x LPRINT "",")BI aNEXT I
175 LPRINT aLPRINT a LPRINT "OBSERVATIONS Y,X(1-5)" aLPRINT

TA(3)X(I,3) TAB(47):X(I,4),TAB(57) tX(I,5)
375 L.PRINT a LPRINT "SSEw"iSOiTABC22)iITERATION NO.-"1T21
TAD(49) ,"LAKBP!"gL
390 LPRINTI mi,,;0R m-11-CSO/(Z2-(21*Zl/N)))

* 490 LPRINT aI~k~ "CONVERGENCE0
500 LPRINT "Yu:' ;114E OUT OF ITERATIONS*
S50 LPRINT mPARAMETERs"
560 LPRINT B(I)i
575 LPRINT
650 LPRINT i LPRINT
665 LPRINT "VAR*"pVpTAB(22);"5D~wiVlITAB(49)I"SSU-"iSO
690 LPRXNT aLPRINT i LPRINT "FIFAL PARAJ4ETERS"ITABC22)1
"STD. ERROR OF PARAM."ITAB(49)1"COEFF. OF' VAR."
695 LPRINT------------------ ITAD(22)1 ---------------------"my
TAD(49)a" ---------------N
725 LPRIWI' TAB(3),fl(1I)TAB(27)jDpTAB(52asD/D(I)
746 LPRINT aLPRINT aLPRINT "VARIANCE-COVARIANCE MATRIX" a LPRINT
776 LPRINT aLPRINT aLPRINT "PRINTOUT OF ESTIMATED Y FOR EACH X"a
LPRINT
785 LPRINT TA3(6)1"XNjTA3(16)j"Y";TAB(23)1a"ESTIMATED Y";
TAB(36);"S.E. EST. Y"ITAB(49)1"RESIDUAL"
790 LPRINT TAB(23),"-("jTj"* S.E.)",TABC36)IN+("jTj"* S.E.)"
792 LPRINT TAB(2)l*--------- ITADC12)1 ----------- TAB(23)1
------------ WiTAD(36),"-------------- YTAD(49)lm -------- *

* 890 LPRIN'r TAB(2)jX(J,1)pTABC12)jY(J)ITAB(23)jY(J)-E1gTABC36)p
V2iTAB(49) Ill
900 LPRINT TAB(23)lL1lTAB(3E)gL2* I 940 LPRINT a LPRINT 2 LPRINT *TABLE OF RESIDUALS" a YPRINT
960 LPRINT m"C"JI")m,EI 981. LPRINT a LPRINT a LPRINT "CORRELW'ION M4ATRIX" aLPRINT
1995 SYSTEM "T" a END
2335 Z~uA(II,JJ) t LPRINT 38p
2340 NEXT JJ t LPRINT a NEXT II
2360 ES.Q(lI,JJ) I LPRINT 381

*2365 NEXT JJ aLPRINT aNEXT 11
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PROGRAM (4) AGAR/FUN (1 PARAMETER)

50 REM ** FUNCTION FOR 131 AN~TIGEN ANTIBODY BINDING
55 Pl1BC1) t TG-X(Jtl)*6.9E-6 I TB-X(J,1)*4.5B-6
60 Al-ltI Bl-l+Pl*TG-P1*TB ,Cl--TB
65 AB-(-B1+SQ)R(Bl*Bl-4*Al*Cl))/(2*Al)

75E-Y(J)-F
70 RETUARN lP1AB

PROGRAM (4) AGAB2/?UN (2 PARAMETERS)

50 REM ** FUNCTION FOR Ill ANTIGEN ANTIBODY BINDING *
55 P1-D(l) s TGwX(J~l)*6.92-6 t TB&X(J,1)*8(2)
60 AluTi t Bl-44PI*TG-P1*TB a C3In-TB

65 A~m(-BI+i4.QR(Bl*Bl-4*Al*Cl))/(2*Al)
-,70 FinPl*AB/(l+Pl*AB)

$80 RETURN

PROGRAM (4) AB2AG/FUN (3 PARAMETERS)

1 ~50 REM * FUNCTION FOn 2 DISTINCT SPECIES OF ANTIBODY, DIFFERENT 1t'S18
S52 Pl-8(t) t P2-B(2) aTBinX(J,I)*4.5TE-6 aT(IwX(J,1)*6.9E-6 i

II54 BL-0 t LG-0 t TL=TG

56 RmSIN(B(3))*SIN(B(3))
58 On.5*CEL+TI,)I
62 B2in(].R)*TB/(l+P2*G)

164 Tc-G*(1+P1*Bl+P2*B2)
66 IF TC>TG THEN TL-G ELSE BLoG
68 IP ABS( (LG-G)/G)<1E-6 THEN 72
70 LG-G a GOTO 58
72 Fu(TG-G)/Tc3 E=Y(J)-IV RETURN
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EXAMPLE (1) - FIXED TOTAL ANTIGEN AND ANTIBODY CONCENTRATION - (1 PARAMETER)

50 REY ** FUNCTION FOR 1:1 ANTIGEN ANTIBODY BINDING *l"

55 PI-B(1) i TGmX(Jl)*6.9E-6 i TB-X(J,1)*4.5S-6

S60 Al-PI a Bl1I+PI*TG-PI*TB I Cl--TB
65 AB,(-BI+SQR(B.*Bl-4*Al*Cl))/(2*A1); :,70 FmPI*AB/(I+PI*AB)

75 E-Y(J)-F
80 RETURN

NONLINEAR REGRESSION ANALYSIS

DATA FILE NAME AGAB201/DAT

MAX. NO. OF ITERATIONS 15

INITIAL VALUE OF LAMBDA I.
NO. OF PARAMETERS 1

STARTING PARAMETERS

B( . ) IE+06

OBSERVATIONS YX(I-5)

1 .336 1 0 0 0 0

(2 .271 .5 0 0 0 0

(3 .247 .25 0 0 0 0

(4 .232 .2 0 0 0 0

5 .231 .166667 0 0 0 0

6 .21 .125 0 0 0 0

(7 .196 .1 0 0 0 0
a8 .147 .05 0 0 0 0

C 9 .122 .0333333 0 0 0 0

(10) .108 .025 0 0 0 0

C11) .093 .02 0 0 0 0

SSE- .0788425 ITERATION NO.- I LAMBDA- 1

R-SQUARE m-. 391782
PARAMETERS
723492

9SSE .0440415 ITERATION NO.- 2 LAMBDA- .1

R-SQUARE - .22255
PARAMETERS
534537

SSE- .032425 ITERATION NO.- 3 LAMBDA- .01

R-SOUARE - .427612
PARAMETERS
517085

SSE- .0322849 ITERATION NO.- 4 LAMBDA- 18-03
R-SQUARE - .430085
PARAMETERS
514760

BSE. .0322822 ITERATION NO.- 5 LAMBDA- 1E-04

R-SQUARE a .430132
PARAMETIRR
514392

SSE- .0322822 ITERATION NO.- 6 LAMBDAm 1E-05

R-sQUARE - .430133

.,. CONVRGENCR

8820 .0322922 ITERATION NO.- 7 LANBDA- 0

R-SQUARE - .430133

B-i
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EXAMPLE (1) - FIXED TOTAL ANTIGEN AND ANTIBODY CONCENTRATION - (1 PARAMETER)

VAR- 3.228228-03 SD. .0568174 SBE- .0322822

"FINAL PARAMETERS STD. ERROR OF PARAM. COEFF. OF VAR.

514392 87748.9 .170588

VARIANCE-COVARIANCE MATRIX

7.69987E+09

PRINTOUT OF ESTIMATED Y FOR EACH X

X Y ESTIMATED Y S.E. EST. Y RESIDUAL
-( 2 * S .E.) + ( 2 * S . .) -

.336 .435135 .0196403 -. 0991355
.395837 .474434

.5 .271 .349467 .0221201 -. 0784667
.305227 .393707

.25 .247 .258758 .0219879 -. 0117584
.214783 .302734

.2 .232 .23041 1.0212914 1.589798-03
.187827 .272993

.166667 .231 .208058 .0204907 .0229425
.167076 .249039

.125 .21 .174782 .0188867 .0352179
.137009 .212556

.1 .196 .151015 .0174022 .0449853
.11621 .185819

.05 .147 .0906243 .012251 .0563757
.0661224 .115126

.0333333 .122 .0649603 9.38744E-03 .0570397
.0461854 .0831352

.025 .108 .0506688 7.59664E-03 .0573312
.0354755 .0658621

.02 .093 .0415453 6.37967E-03 .0514547
.0287859 .0543046

TABLE OF RESIDUALS

1 -. 0991355
2 -. 0784667

("3 -. 0117584
4 1.58979E-03
5 .0229425
6 .0352179
7 .0449853
8a .0563757
9 .0570397

S10 ) .0573312
11 3 .0514547

CORRELATION MATRIX

1

0-2
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EXAMPLE (2) - VARIABLE TOTAL ANTIBODY CONCENTRATION - (2 PARAMETERS)

50 REM ** FUNCTION FOR l.l ANTIGEN ANTIBODY BINDING *
55 Pl-B(1) I TGaX(J,1)*6.9E-6 : TBNX(Jl)*B(2)
60 Al-PI i BI-D+PI*TG-PI*TB t Cl--TB
65 AB-(.- B+SQR(B1 *B.-4*AI*Cl))/(2*A1)
70 F-PI*AB/(I+Pl*AB)
75 E-Y(J)-F
80 RETURN

NONLINEAR REGRESSION ANALYSIS

DATA FILE NAME AGAB201/DAT
MAX. NO. OF ITERATIONS 15
INITIAL VALUE OF LAMBDA 1
NO. OF PARAMETERS 2

STARTING PARAMETERS

B( 1 ) 1E+06
S( 2 4.5E-O6

OBSERVATIONS Y,X(I-5)

( 336 1 0 0 0 0
2 .271 .5 0 0 0 0

33 .247 .25 0 0 0 0
4 .232 .2 0 0 0S5 .231 .166667 0 0 0 0

"(6 .21 .125 0 0 0 0
7 196 .1
( .147 .05 0 0 0 0
9 .122 .0333333 0 0 0 0

(10) .108 .025 0 0 0 0
1C).) .093 ,02 0 0 0 0

SSE* .0788425 ITERATION NO.- I LAMBDA- I
R-SQUARE --. 391782
PARAMETERS
856896 3.8962E-06

SSE= .0271986 ITERATION NO.- 2 LAMBDA- .2
R-SQUARE - .51972N
PARAMETERS
1.133323+06 2.24243E-06

SSE7 . 90103209 ITERATION NO.- 3 LAMBDA- .-01
R-SQUARE a .817809
PARAMETERS
1.936859+06 2.22722E-06

SSE- 7.65994E-03 ITERATION NO.- 4 LAMBDA- 13-03
R-SQUARE a .964782
PARAMETERS

2.573919+06 2.292062-06
3SE- 1.65279E-03 ITERATION NO.- 5 LAMBDAm I-S04

R-SQUARE - .970227

PARAMETERS
2.65934E+06 2.289933-06

B-3
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EXAMPLE (2) - VARIABLE TOTAL ANTIBODY CONCENTRATION - (2 PARAMETERS)

SSE- 1.57867E-03 ITERATION NO.- 7 LAMBDA- IE-06R-SQUARE a .972132

PARAMETERS
2.66445E+06 2.28895E-06

SSE- 1.57865E-03 ITERATION NO.- 8 LAMBDAm IE-07
R-SQUARE a .972133
PARAMETERS
2.67128E+06 2.2874E-06

SSE- 1.5786E-03 ITERArION NO.- 9 LAMBDA- 1E-08
R-SQUARE a .972134
PARAMETERS
2.66406E+06 2.28876E-06

"SSE- 1.57857E-03 ITERATION NO.- 10 LAMBDA. 1E-09
R-SQUARE - .972134
PARAMETERS
2,65847E+06 2.29005E-06
PARAMETERSI 2.65847B+06 2.29005E-06
PARAMETERS
2.65847E+06 2.29005E-06

PARAMETERS
2,65847E+06 2.29005E-06

* PARAMETERS
2.65847E+06 2.29005E-06
PARAMETERSk 2.65847E+06 2.29005E-06S~PARAMETERS
2.6585E+06 2.29004E-06
PARAMETERS
2.65881E+06 2,28996E-06
PARAMETERS'2.66064E+06 2.28949E-06
PARAMETERS
2.66324E+06 2.28887E-06

CONVERGENCE

SSE- 1.57857E-03 ITERATION NO.- 11 LAMBDA- 0
R-SQUARE - .972134

VAR- 1.75397E-04 SD- .0132437 SSE- 1.57857E-03

FINAL PARAMETERS STD. ERROR OF PARAM. COEFF. OF VAR.

2.66406E+06 322641 .121109
2.28876E'-06 8.4831SE-08 .0170644

VARIANCE-COVARIANCE MATRIX

S1.04097E+I -. 0229482
-.. 0229462 7.19637E-15

PRINTOUT OF ESTIMATED Y FOR EACH X

X Y ESTIMATED Y S.E. EST. Y RESIDUAL
-( 2 * S.E.) +( 2 * S.E.)

1 .336 .307543 9.02226E-03 .0284566.289499 .325588
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EXAMPLE (2) - VARIABLE TOTAL ANTIBODY CONCENTRATION - (2 PARAMETERS)

.5 .271 .287748 6.86438E-03 -. 0167481
.274019 .301477

.25 .247 .256595 4.88633E-03 -9.59546E-03
.246823 .266368

.2 .232 .243942 4.5436E-03 -. 011942
.234855 .253029

.166667 .231 .23271 4.44295E-03 -1.70967E-03
.223824 .241596

.125 .21 .213538 4.57805E-03 -3.63788E-03
.204382 .222694

.1 .196 .197674 4.84864E-03 -1.67352E-03
.187976 .207371

.05 .147 .145878 5.58837E-03 1.1219iE-03
.134701 .157055

.0333333 .122 .1165 5.535723-03 5.49953E-03
.105429 .127572

.025 .108 .0972603 5.249353-03 .0107398
.0867616 .107759

.02 .093 .0835914 4.910653-03 9.408583-03
.0737701 .0934127

TABLE OF RESIDUALS

1 .0284566
2 -. 0167491
3 -9.59546E-03
4 -. 011942
5 -1.70967E-03
6 -3.53788E-03
/ -1.67352E-03
8 i.12191E-03
9 5.49953E-03
10 .0107398
11 9.4085RE-03

CORRELATION MATRIX
.999997 .838443

.838443 1
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EXAMPLE (3) - 2 SPECIES ANTIBODY, 2 BINDING CONSTANTS - (3 PARAMETERS)

50 REM ** FUNCTION FOR 2 DISTINCT SPECIES OF ANTIBODY, DIFFERENT K'S *
52 P1,B(1) t P2-B(2) : TGmX(J,1)*6.9E-6 a TB"X(J,1)*4.SE-6
54 BL-0 & LGO0 i TL-TG
56 R-SIN(B(3))*SIN(B(3))
58 G-.5*(BL+TLI
60 BI-R*TB/(I+PI*G)
62 B2-(l-R)*TB/(I+P2*G)
64 TC-G*(l+P1*Bl+P2*82)
66 IF TC>TG THEN TL-G ELSE BL-G
68 IF ABS((LG-G)/G)<LE- THEN 72
70 LG-G t GOTO 58
72 F-(TG-G)/TG t Z-Y(J)-F : RETURN

NONLINEAR REGRESSION ANALYSIS

DATA FILE NAME AGAB201/DAT
MAX. NO. OF ITERATIONS 15
INITIAL VALUR OF LAMBDA 1
NO. OF PARAMETERS 3

STARTING PARAMETERS

B( 1 1 IE+06
BC 2 ) 10000
B( 3) .4

OBSERVATIONS Y,X(I-5)

C 1 .336 1 0 0 0 0
(2 .271 .5 0 0 0 0
(3 .247 .25 0 0 0 0
(4 .232 .2 0 0 0 0
C5 ) .231 .166667 0 0 0 0
(6) .21 .125 0 0 0 0
(7 .196 .1 0 0 0 0: 8 .147 .05 0 0 0 0
C 9 .122 .0333333 0 0 0 0

10 .108 .025 0 0 0 0
(11) .093 .02 0 0 0 0

SSE- .259762 ITERATION NO.- I LAMBDA- I
R-SQUARE -- 3.5855
PARAMETERS
3.42768E+06 37845.6 .589247

S SE-m .0276968 ITERATION NO.= 2 LAM4BDA- .1
R-S60U.kE - .51121.9

PARAMETERS
4.96381R+06 62957.1 .649253

SSE- 6.298588-04 ITERAION NOw 3 LAMBDA- .01

R-SQUARE - .986882PARAMETERS

.4.47224+06 62553.9 .670344

SE- 3.312472-04 ITERATION NO.w 4 LAMBDA- 1E-03R-SQUARE - .994153

PARAMETIRS
4.422393+06 60377.4 .674733

SE" 3.26629Z-04 ITERATION NO.w S LAMBDA- 1E-04
R-SQUARE - .994234
PARAMETERS

3-6
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SAPPENDIX B

EXAMPLE (3) - 2 SPECIES ANTIBODY, 2 BINDING CONSTANTS - (3 PARAMETERS)
4,43023E+06 60681.1 .6743

PARAMETERS
4.4299E+06 60673.7 .674314
PARAMETERS
4,42"52E+06 60619.5 .674418
PARAMETERS
4.42257E+06 60491.7 .674649

SEE- 3.25614EP04 ITERATION NO.- 6 LAMBDA- .01
R"SQUARE - .994234
PARAMETERS
4.40268E9O6 59897.8 .675587
PARAMETERS
0.41817E+06 60265.9 .674898.1 ,PARAMETHRS 4, 4 2229H+06 60431.9 .674663

ISE- 3.26613E-04 ITERATION NO.- 7 LAMBDA- .1
R-SQUARE - .994234
PARAMETERS
4.42156E+06 60452.2 .67469
PARAMETERS
4.422239+06 60447.9 .674671

, •t-NVERGENCE

SSE- 3.26613E-04 ITERATION NO.- 8 LAMBDA- 0
R-SQUARE - .994234

o VAR- 4.08266F-05 SD- 6.38958E-03 SEE- 3.26613E-04

FINAL PARAMETERS STD. ERROR OF PARAM. COEFF. OF VAR.

4.42229E+06 550569 .124499
60437.9 12239.4 .202512
.674660 .0223403 .0331133

IARIANCE-COVARIANCE MATRIX

3.03127E+11 5.1076E+09 -11292.8
5.1 076E+09 1. 49804E+08 -248.384
-11292.8 -248.384 4.9909E-04

PRINTOUT OF ESTIMATED Y FOR EACH X

X Y ESTIMATED Y S.E. EST. Y RESIDUAL
-( 2 * S.E.) +( 2 * S.E.)

.336 .329505 5.84322E-03 6.49476E-03
.317819 .341192

.5 .271 .284716 3.2307E-03 -. '013716

.2,.47.278255 .291177
..25 .247 245774 3.0248E-03 1.22634E-03

6 .232 .239724 .251823
2.2 .232 .33536 2.93133E-03 -1.53597E-03

.227673 .239399
.166667 .231 .223414 2.7993E-03 7.58627E.-03

S.217815 .229012

.125 .21 .207019 2.59741E-03 2.90081E-03
.201824 .212214

.1 .196 .193848 2.497613-03 2.15201E-03
.188853 .198843

B-B-7
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APPENDIX B

EXAMPLE (3) - 2 SPECIES ANTIBODY, 2 BINDING CONSTANTS - (3 PARAMETERS)

.0 147 .150552 2.743oeE-03 -3-552OIE-03
.5.145066 .156038

.124361 3.317836z-03 -2630131E-03

105 .0 6.106789 3.749-3 216E0
II .122 ~.100232 .:17133613-.0E

.04 .9 -. 0936E081 337333-.83E0
500697258.100244

7 6 .49476.E-03
2 -3.5013716
3 1.226343E-03

5 10.5862711E-03
6 21)-.90831E-03

.799 .490 2.1541E31

*~ .45901820182200

.999996 .8220078 .813

Rm .390168 (Rh.609832

B-8



APPENDIX C

DERIVATION OF ll ANTIGEN-ANTIBODY BINDING FUNCTION

Definitionst

G-free antigen cone. B-free antibody conc.
TG-total antigen conc. TB-total antibody conc.
BO-bound antigen-antibody complex K-binding constant

Equilibrium expressions

K-BG/(B*G) or BG-K*B*G (1)

Mass balance equationas

TB-B+BG (2) and TG-G+BG (3)

Using equations (1) and (3) we gets

TGWG+K*B*G or TGmG*(l+K*B) or GUTG/(l+K*B) (4)

Using equations (2) and (3) we gets

TBmB+K*B*G and using (4): TBmB+(K*B*TG/(l+K*B)) (5)

Using equations (2) and (5) we gets

BG-TB-B or BG-B+(K*B*TG/(l+K*B))-B or BGUK*B*TG/(I+K*B)

Dividing both sides by TO we gete

(BG/TG)UK*B/(l+K*B) (6)

(BG/TG) is the fraction antigen bound or our measured Y
value. If we let K*B equal X, we see that the 1i1 binding
equation reduces to the hyperbolic form Y-X/(I+X), whereY-fraction antigen bound and X-the binding constant times thefree antibody concentration.

In order to solve equation (6) for fraction antigen bound,
we must first know the free antibody concentration (B). We can

* -use equation (5) which contains only known quantities and B, and
raduce it to a second order polynomial in B.

S I. Multiplying each term of equation (5) by (l+K*B) we gets

I TB*(l+KOB)wB*(l+K*B4K*B*TG or TB+K*B*TB=B+K*B*B+K*B*TG

Rearranging and collecting terms we gets

K*(3*e)+B+K*8*TG-K*B*TB-TB-0 or K6(B*B)+(l+K*(TG-TB))*S-T8-0

*. This is a quadratic equation in 8 where the terms aret

a-K bnl+K*(TO-T3)) and cW-TB

It is now possible to use the quadratic equation
((-b+SQR(b*b-4*a*o))/2*e) to solve for B using these terms.
These are the same terms used in function AGAB/FUi in Appendix A
and in examples 1 and 2 Appendix B. Once 8 in known then
equation (6) can be used to calculate the fraction antigen bound
and the error term to complete the function subroutine. This
same proceduro can be used to solve other equilibrium models

' p rovided a means for finding the root of the derived polynomial
- I available.



APPENDIX C

MODEL FOR ANTIGEN-ANTIBODY BINDING ASSUMING TWO
DISTINCT SPECIES OF ANTIBODY WITH

DIFFERENT BINDING CONSTANTS FOR ANTIGEN

Definitionas

G-free antigen conc. Bi-free antibody 1 conc.
T*l-total conc. antibody 1 B2-frse antibody 2 conc.
TB2mtotal oonc. antibody 2 R-fraction of TB as TBl
TB-total antibody conc. Ki-binding constant 1
TG-total antigen conc. K2-binding constant 2
GBl-complex with BI GB2mcomplex with B2

Equilibrium expressions:

GulxI*G*B1 and GB21K2*G*B2

Mass balance equation.s

TBl-BI+GBl and TB2-B2+GB2 and TG-G+GBl+GB2

Partition functionsi

TB-TBl+TB2 and TB1-R*TB and TB2w(I-R)*TB

Using the equilibrium and mass balance equations we gett

Bl-TB1/(I+Kl*G) or Bl-R*TB/(I+Kl*G) (1)

B2-TB2/(l+K2*G) or B2-(l-R)*TB/(I+K2*G) (2)

TG=G+Kl*G*BI+K2*G*B2 or TG-G*(l+KI*Bl+K2*B2) (3)

If we were to solve theme equations in terms of G we would
obtain a third order polynomial or cubic equation in G. Sincethere is no simple technique for obtaining the root of this

equation, there is no point in solving in terms of G. Instead we
use a numerical technique for solution which depends on the
equations being positive definite functions.

Equations (l)-(3) above are structured so that given G we
can solve for TG. TG is known however and is the key to knowing
when we have selected the correct G. First we set a lower and an
upper limit to G. We met the lower limit to 0 and the upper

* limit to TG. We then guess that the value for G is half way
between 0 and TG. This first value of G is used to calculate a
value for TO and compare it to the real value. If the calculated

* value is too high then B was too high and we make the first guess
on a the new upper limit. If it is too low we make the first
guess on G the new lower limit. We make a new guess half way
"between the new upper and lower limits and try again until the

* .value for G converges to the correct value. This usually happens
in 7-10 passes. Once we know the value for a we can calculate
the fraction bound (?m(TG-G)/TG).

.. 2
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•i APPENDIX C

nThe ollowing BArIC code performs the numerical solution ofS ,• ~a function using this binary search method: :

"50 REM ** FUNCTION FOR 2 DIFFERENT SPECIES OF ANTIBODY WITH
DIFFERENT K'S --- P1aKl AND P2iK2 **
52 Pl-B(l) i P2-B(2) t TB-X(J,1)*4.5E-6 t TGuX(J,1)*6.9E-6
54 BLuO t LG-O i TLTG
56 R-SIN(B(3))*SIN(B(3))
58 G-.5*(BL+TL)
60 Bl-R*TB/(I+PI*G)
62 B2(ll-II*TB/(l+P2*G)
64 TC-G*(I+Pl*Bl+P2*B2)
66 IF TC>TG THEN TL-G ELSE EL-G
68 IF ABB((LGOG)/G)<IE-6 THEM 72
7 0 LTmO i GOTO 58
72 Fm(ITG-G)/TG I E-Y(J)-P # RETURN

"The variables &re defined as follow.t

P1=Kl, PF2K2, R- fraction total antibody am species El.
B(1), B(2) and B(3) are the parameter variables B'S

manipulated by the main program representing Kl, K2,
and R respectively.

TB and TG are the total antibody and total antigen
concentrations.

X(Jpl) is the X data variable, J is the number of the data
point and 1 means the first independent variable of a
possible 5.

a is the tree antigen concentration.
8L is the bottom limit for G, TL is the top limit for 0 and

TL is the last value for 0.
8l and B2 are the free concentrations of antibodies 1 and

antibody 2 respectively.
TC is the calculated concentration for TG, TG(Calc).
Y(J) is the Y value for the Jth data point.
Line 58 provides a new guess for G half way between the

upper and the lower limits.
Lines 60 to 64 calculate a value for TG(calc) using the a

from line 58.
Line 66 compares the TQtcalc) with TG and sets the new upper

or lower limit depending on the outcome.
Line 60 tests for convergence and either branches out of the

loop or causes another pass.
Line 70 resets the last a value to the current value.

* .• .,.
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APPENDIX D

VARIABLE CROSS REFERENCE INDEX FOR "NONLIN/PRT*

A 25( *325(2 355(3 365( 440( 720( 860( *2035( 2285( '2310( 2335(

AA 25( 2115( 2140( *2145(2 "2150( 2175( '2185(2 2210( *2220(3 *226'0( *2285(
B 20( '150(2 *285(2 '295(2 300( 470( *515(2 560( *605(2 725(2 "820(2 *830(2

835(
C 25( 430( *2085( 2155( *2160(2 "2165( "2190(2 *2225(3 *2265( *2290( 2310c
D *720 725/2
DI *1000 1005
D2 '1500 1505
E 270/2 275 300 540/2 810 835 960
31 *275 300 315 *810 835 880 890/2
15 '160 170
36 '100 105
37 *740 745
38 '975/2 '2335/2 '2360/2
0 20( '315(2 *365(2 430( *2010(
Hf7 *770 775
H8 *925 930
I 15 '145 150/5 '180 190/7 195 *205 210 215/2 220 *280 285/2 295/2 300/2 305

'310 315/3 325/3 335 *345 355/4 365/4 370 *395 400/4 405 '415 420 430/3
440/4 445 *460 465 470/2 '480/2 '510 515/3 520 *555 560 570 *600 605/3 610
'715 720/2 725/2 730 '815 820/2 830/2 835/2 840 *2420 2425 2435 2440

I1 -320 325/3 330
I1 *2005 2010 2015 *2030 2035 2040 *2055 2060 2065 *2080 2085 2090 '2110 2115

2120 2145 2150 2160 2165 *2260/3 2265/3 '2285/3 2290/3 *2305 2310/2 2315
*2330 2335 2340 *2355 2360 2365

J 15 *260 340 *350 355/4 360 *425 430/2 435 '510 545 '800 880 890/3 910 *950
960 965 *2430 2435 2440

31 '855 860/2 865
J2 *850 860/2 870
3J *2030 2035 2040 *2055 2060 2065 *2080 2085 2090 '2105 2110 2115 2140 2145

* 2155 2160 2175/2 2185/2 2190/2 2205 2210 2220 2225 2240 '2260/3 2265 '2285/3
2290 '2305 2310/2 2315 *2330 2335 2340 *2355 2360 2365

K 15
KK '2135 2140 2145/2 2150 2155 2160/2 2165 2170 '2180 2185/2 2190/2 2195 '2215

*' 2220/3 2225/3 2230
L '120 125 375 400 '585/2 *595/2 *625
L *890 885 900
L2 *885 900

" LL *2200 2205 2210 2220/2 2225/2 2235
N 180 205 260 390 530 655 800 950 '2415 2420
N 1 '130 135 145 280 310 320 345 350 395 415 425 465 475 510 555 600 655 715 815

850 855 2005 2030/2 2055/2 2080/2 2105 2110 2135 218C 2200 2215 2260/2
2285/2 2305/2 2330/2 2355/2

"N2 *2415 2430
NN *460 '47C/2 475
P 20( *300( 315( 125(2 *420( *430(2 *440(2 470( 515( 605( '835( 860(2
Q Q 25( '355f *400(2 *2060( 2260( 2360(
s '2140 2150 '2155 2165
S0 *235 *270/2 375 390 580 655 665
81 *')25 *540/2 580
T */80 790/2 880 885
T1 *110 115 450 455 *620
T2 *225 "230/2 375 455
TT '2175 2185 2190 '2210 2220 2225
V *655 660 665 2310
V1 '660 665 *845 *960/2 875
V2 '875 880 885 890
X 20( 190(5 890( *2435(
Y 20( 190( 210( 215(2 860( 890(2 '2425(
Z 31/' '2405/$ 2410/$
Z1 *200 '210/2 390/2
"Z2 *200 '215/2 390

D-1
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